Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sci Data ; 9(1): 776, 2022 12 21.
Article in English | MEDLINE | ID: covidwho-2185972

ABSTRACT

Anonymization has the potential to foster the sharing of medical data. State-of-the-art methods use mathematical models to modify data to reduce privacy risks. However, the degree of protection must be balanced against the impact on statistical properties. We studied an extreme case of this trade-off: the statistical validity of an open medical dataset based on the German National Pandemic Cohort Network (NAPKON), which was prepared for publication using a strong anonymization procedure. Descriptive statistics and results of regression analyses were compared before and after anonymization of multiple variants of the original dataset. Despite significant differences in value distributions, the statistical bias was found to be small in all cases. In the regression analyses, the median absolute deviations of the estimated adjusted odds ratios for different sample sizes ranged from 0.01 [minimum = 0, maximum = 0.58] to 0.52 [minimum = 0.25, maximum = 0.91]. Disproportionate impact on the statistical properties of data is a common argument against the use of anonymization. Our analysis demonstrates that anonymization can actually preserve validity of statistical results in relatively low-dimensional data.


Subject(s)
COVID-19 , Humans , Bias , Data Anonymization , Models, Theoretical , Privacy , Data Interpretation, Statistical , Datasets as Topic
2.
JMIR Mhealth Uhealth ; 8(11): e22594, 2020 11 10.
Article in English | MEDLINE | ID: covidwho-976111

ABSTRACT

BACKGROUND: The novel coronavirus SARS-CoV-2 rapidly spread around the world, causing the disease COVID-19. To contain the virus, much hope is placed on participatory surveillance using mobile apps, such as automated digital contact tracing, but broad adoption is an important prerequisite for associated interventions to be effective. Data protection aspects are a critical factor for adoption, and privacy risks of solutions developed often need to be balanced against their functionalities. This is reflected by an intensive discussion in the public and the scientific community about privacy-preserving approaches. OBJECTIVE: Our aim is to inform the current discussions and to support the development of solutions providing an optimal balance between privacy protection and pandemic control. To this end, we present a systematic analysis of existing literature on citizen-centered surveillance solutions collecting individual-level spatial data. Our main hypothesis is that there are dependencies between the following dimensions: the use cases supported, the technology used to collect spatial data, the specific diseases focused on, and data protection measures implemented. METHODS: We searched PubMed and IEEE Xplore with a search string combining terms from the area of infectious disease management with terms describing spatial surveillance technologies to identify studies published between 2010 and 2020. After a two-step eligibility assessment process, 27 articles were selected for the final analysis. We collected data on the four dimensions described as well as metadata, which we then analyzed by calculating univariate and bivariate frequency distributions. RESULTS: We identified four different use cases, which focused on individual surveillance and public health (most common: digital contact tracing). We found that the solutions described were highly specialized, with 89% (24/27) of the articles covering one use case only. Moreover, we identified eight different technologies used for collecting spatial data (most common: GPS receivers) and five different diseases covered (most common: COVID-19). Finally, we also identified six different data protection measures (most common: pseudonymization). As hypothesized, we identified relationships between the dimensions. We found that for highly infectious diseases such as COVID-19 the most common use case was contact tracing, typically based on Bluetooth technology. For managing vector-borne diseases, use cases require absolute positions, which are typically measured using GPS. Absolute spatial locations are also important for further use cases relevant to the management of other infectious diseases. CONCLUSIONS: We see a large potential for future solutions supporting multiple use cases by combining different technologies (eg, Bluetooth and GPS). For this to be successful, however, adequate privacy-protection measures must be implemented. Technologies currently used in this context can probably not offer enough protection. We, therefore, recommend that future solutions should consider the use of modern privacy-enhancing techniques (eg, from the area of secure multiparty computing and differential privacy).


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Contact Tracing/methods , Mobile Applications , Public Health Surveillance/methods , Spatio-Temporal Analysis , Computer Security , Humans , Pandemics , Privacy
3.
Sci Data ; 7(1): 435, 2020 12 10.
Article in English | MEDLINE | ID: covidwho-972239

ABSTRACT

The Lean European Open Survey on SARS-CoV-2 Infected Patients (LEOSS) is a European registry for studying the epidemiology and clinical course of COVID-19. To support evidence-generation at the rapid pace required in a pandemic, LEOSS follows an Open Science approach, making data available to the public in real-time. To protect patient privacy, quantitative anonymization procedures are used to protect the continuously published data stream consisting of 16 variables on the course and therapy of COVID-19 from singling out, inference and linkage attacks. We investigated the bias introduced by this process and found that it has very little impact on the quality of output data. Current laws do not specify requirements for the application of formal anonymization methods, there is a lack of guidelines with clear recommendations and few real-world applications of quantitative anonymization procedures have been described in the literature. We therefore believe that our work can help others with developing urgently needed anonymization pipelines for their projects.


Subject(s)
COVID-19/epidemiology , Data Anonymization , Pandemics , Registries , Adult , Aged , Aged, 80 and over , Biomedical Research , Confidentiality , Datasets as Topic , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL